Exercise 87

A particle moves along a straight line with displacement $s(t)$, velocity $v(t)$, and acceleration $a(t)$. Show that

$$
a(t)=v(t) \frac{d v}{d s}
$$

Explain the difference between the meanings of the derivatives $d v / d t$ and $d v / d s$.

Solution

$d v / d t$ is the rate that velocity changes as time increases, whereas $d v / d s$ is the rate that velocity changes as displacement increases. The acceleration is the derivative of velocity, normally written as

$$
a(t)=\frac{d v}{d t}
$$

But if the velocity is known as a function of position rather than time, that is,

$$
v=v(s)
$$

then

$$
a(t)=\frac{d v}{d t}=\frac{d}{d t}[v(s)]=v^{\prime}(s) \cdot \frac{d}{d t}(s)=\frac{d v}{d s} \frac{d s}{d t}=\frac{d v}{d s} v(t)
$$

by the chain rule.

